浙江成人高考专升本高等数学试题
作者:原编 责任编辑:浙江成考网 2020-09-18
1、连续
1、知识范围
(1)函数连续的概念
函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算、复合函数的连续性、反函数的连续性
(3)闭区间上连续函数的性质
有界性定理、最大值与最小值定理、介值定理(包括零点定理)
(4)初等函数的连续性
2、考试要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
一元函数微分学
(一)导数与微分
1、知识范围
(1)导数概念
导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算、反函数的导数、导数的基本公式
(3)求导方法
复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数
(4)高阶导数
高阶导数的定义、高阶导数的计算
(5)微分
微分的定义、微分与导数的关系、微分法则一阶微分形式不变性
2、考试要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的阶导数。
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
版权声明
1、凡本网注明“来源:浙江成考教育网”的所有作品,均为浙江成考教育网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:浙江成考教育网”。违反上述声明者,本网将追究其相关法律责任。
2、凡本网注明“来源:XXX(非浙江成考教育网)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
3、本网不保证向用户提供的外部链接的准确性和完整性,该外部链接指向的不由本网实际控制的任何网页上的内容,本网对其合法性亦概不负责,亦不承担任何法律责任。